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The discussion here is regarding attitude estimation from raw gyroscope measurements. Three different
parameterizations of attitude is considered namely, Euler angles (θ ∈ R3) , Direction Cosine Matrix (DCM)
(R ∈ SO(3)) and quaternions (q). A simple euler integration is considered for attitude estimation and a linear
(incremental) covariance propagation is derived. Dynamics governing each of the three parameterizations are;

ṘWB = RWB Bω
∧
WB, q̇ =

1

2
q⊗ BωWB θ̇ = E(θ) BωWB (1)

where (.)∧ is the hat operator representing skew-symmetric matrix of the input vector and ⊗ is the quaternion
product. Following gyroscope model is considered,

Bω̃WB(t) = BωWB(t) + bg(t) + ηg(t), (2)

where bg(t) ∈ R3 is bias and ηg(t) ∼ N (03,Σ
g). Following sections derive attitude as a function of time

along with covariance.

Content here is partly from [1]. There is accompanying code written in C++ and can be found at github1.

1 DCM

1.1 Identities

Before beginning, following identities will be quite handy, Let f : R3 → SO(3), then right jacobian Jr is
given by,

Jr(θ) = Lt
δθ→0

f(θ + δθ)	 f(θ)

δθ
(3)

From above, f(θ+ δθ) = f(θ)⊕ ∂f(θ)
∂θ δθ. When f is Exp : R3 → SO(3), Exp(θ+ δθ) = Exp(θ)Exp (Jr(θ)δθ).

The second useful property is,

Exp(θ)R = RExp(RTθ) (4)

1.2 Derivation

Integrating (1), gives,

RWB(t+∆t) = RWB(t) Exp

(∫ t+∆t

t
BωWB(τ)dτ

)
(5)

Using Euler integration assuming BωWB is constant in the interval [t, t+∆t],

RWB(t+∆t) = RWB(t) Exp (BωWB(t)∆t) . (6)

Dropping subscript notation and using gyroscope model as stated in (2),

R(t+∆t) = R(t) Exp
((
ω̃(t)− bg(t)− ηgd(t)

)
∆t
)
. (7)

Writing R(t) as Ri and integrating the above equation repeatedly for k = [i, i+ 1, . . . , j − 1] gives,

Rj = Ri

j−1∏
k=i

Exp
((
ω̃k − bgk − η

gd
k

)
∆t
)
. (8)

1 https://github.com/kvmanohar22/attitude_estimation
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The above can be simplified applying (3) in (9) and (4) in (10) repeatedly by moving the noise terms to the
far right gives,

Rj = Ri

j−1∏
k=i

Exp
((
ω̃k − bgk − η

gd
k

)
∆t
)

(9)

= Ri

j−1∏
k=i

Exp ((ω̃k − bgk)∆t) Exp
(
−Jr (ω̃k − bgk)ηgdk ∆t

)
(10)

= Ri

(
j−1∏
k=i

Exp ((ω̃k − bgk)∆t)

)
j−1∏
k=i

Exp

(
−

j−1∏
m=k+1

Exp ((ω̃m − bgk)∆t)
T
Jr (ω̃k − bgk)ηgdk ∆t

)
(11)

The above equation can be simplified by using the shorthand notation, ∆R̃ij :=
∏j−1
k=i Exp ((ω̃k − bgk)∆t)

and Jkr := Jr (ω̃k − bgk),

Rj = Ri

(
j−1∏
k=i

Exp ((ω̃k − bgk)∆t)

)
j−1∏
k=i

Exp

(
−

j−1∏
m=k+1

Exp ((ω̃m − bgk)∆t)
T
Jkrη

gd
k ∆t

)

= Ri ∆R̃ij

j−1∏
k=i

Exp
(
−∆R̃Tk+1jJ

k
rη

gd
k ∆t

)
= Ri ∆R̃ijExp

(
−δφij

)
(12)

where noise is defined as Exp(−δφij) :=
∏j−1
k=i Exp

(
−∆R̃Tk+1jJ

k
rη

gd
k ∆t

)
From (12), the noise has been

separated and it is easy to read mean of the distribution. Noise can now be further analyzed to obtain an
expression for covariance. From the noise definition we have

δφij = −Log

(
j−1∏
k=i

Exp
(
−∆R̃Tk+1jJ

k
rη

gd
k ∆t

))

≈ −
j−1∑
k=i

∆R̃Tk+1jJ
k
rη

gd
k ∆t (13)

where above is obtained by repeated application of Log(Exp(φ)Exp(δφ)) ≈ φ+J−1r (φ)δφ. Up to first order,

δφij is a linear combination of zero-mean Gaussian noise ηgdk and hence δφij is also zero-mean Gaussian
white noise. (13) gives expression for noise as a function of time but for every new measurement, the entire
sum has to be recomputed. But that can be avoided by re-arranging the terms as follows,

δφij = −
j−1∑
k=i

∆R̃Tk+1j J
k
rη

gd
k ∆t

= −
j−2∑
k=i

∆R̃Tk+1j J
k
rη

gd
k ∆t−∆R̃Tjj J

j−1
r ηgdj−1∆t

= −
j−2∑
k=i

∆R̃Tk+1j J
k
rη

gd
k ∆t− Jj−1r ηgdj−1∆t

= −
j−2∑
k=i

(
∆R̃k+1j−1 ∆R̃j−1j

)T
Jkrη

gd
k ∆t− Jj−1r ηgdj−1∆t

= −
j−2∑
k=i

∆R̃Tj−1j ∆R̃Tk+1j−1 Jkrη
gd
k ∆t− Jj−1r ηgdj−1∆t

= −∆R̃Tj−1j

(
j−2∑
k=i

∆R̃Tk+1j−1 Jkrη
gd
k ∆t

)
− Jj−1r ηgdj−1∆t

= −∆R̃Tj−1jδφij−1 − Jj−1r ηgdj−1∆t (14)

Noise at tj is a linear combination of noise at tj−1 and the latest measurement. Assuming at the start the
noise δφ0 is zero-mean gaussian, δφij being linear combination of zero-mean gaussians, is again zero-mean



gaussian. Clearly ˆδφij = E[δφij ] = 0. Denoting δφij ∼ N (0,Σij),

Σij = E
[(
δφij − ˆδφij

)(
δφij − ˆδφij

)T]
= E

[
δφij δφ

T
ij

]
= E

[(
−∆R̃Tj−1jδφij−1 − Jj−1r ηgdj−1∆t

) (
−∆R̃Tj−1jδφij−1 − Jj−1r ηgdj−1∆t

)T]
= ∆R̃Tj−1jE

[
δφij−1δφ

T
ij−1

]
∆R̃Tj−1j + Jj−1r E

[
ηgdj−1η

gd
j−1

T
]
Jj−1r

T∆t2

= ∆R̃Tj−1jΣij−1∆R̃Tj−1j + Jj−1r ΣgdJj−1r
T∆t2, (15)

where variables ηgdj−1 and δφij−1 are assumed to be uncorrelated.
Note how inefficient (13) is as illustrated in Fig. 1.

Fig. 1: Linear Propagation Covariance computation inefficiency when using (13). The ones in red are com-
puted upto time tj and with a new measurement at tj+1, every delta measurement needs to be recomputed
and worst they need to be stored.

2 Euler angles

2.1 Derivation of dynamics equation

Let θ = (α β γ)
T

be euler angles that represent attitude of body frame (B) in world frame (W). Using zyx
rotation convention,

RWB = R3(−γ)R2(−β)R1(−α)

= RWb2 Rb2b1 Rb1B (16)

where additional axes b1 and b2 are introduced. Using the identity of angular velocities,

BωWB = BωWb2 + Bωb2b1 + Bωb1B

= RTb1B RTb2b1 b2ωWb2 + RTb1B b1ωb2b1 + Bωb1B

= R1(α) R2(β) b2ωWb2 + R1(α) b1ωb2b1 + Bωb1B (17)

Further, angular velocities can be written as,

Bωb1B = (α̇ 0 0)T b1ωb2b1 = (0 β̇ 0)T b2ωWb2 = (0 0 γ̇)T (18)

Substituting (16), (18) in (17), and after simplication,

BωWB =

1 0 − sin(β)
0 cos(α) sin(α) cos(β)
0 − sin(α) cos(α) cos(β)

α̇β̇
γ̇

 (19)

Inverting the above gives the familiar euler rate equation,

θ̇ :=

α̇β̇
γ̇

 =

1 sinα tanβ cosα tanβ
0 cosα − sinα
0 − sinα cosα secβ


BωWB (20)



2.2 Euler Angle State Estimation

In this case euler angles (θ = (α β γ)
T

) are integrated according to (1) where

E(θ) :=

1 sinα tanβ cosα tanβ
0 cosα − sinα
0 − sinα cosα secβ

 (21)

Note the singularity as β → 90◦.

θ(t+∆t) = θ(t) +

∫ t+∆t

t

E(θ(τ)) BωWB(τ)dτ (22)

(23)

Using euler integration from [t, t+∆t] gives,

θi+1 = θi + E(θi) ωi∆t

= θi + E(θi)
(
ω̃i − bgi − η

gd
i

)
∆t (24)

RHS of (24) is non-linear, we linearize about the current mean estimate (i.e, θ̂ = E[θ]) and retain terms up
to first order,

θi+1 = f(θi,η
gd
i )

≈ f(θ̂i, η̂
gd
i ) +

∂f(θi,η
gd
i )

∂θi

(
θi − θ̂i

)
+
∂f(θi,η

gd
i )

∂ηgdi

(
ηgdi − η̂

gd
i

)
= f(θ̂i,0) +

∂f(θi,η
gd
i )

∂θi

(
θi − θ̂i

)
+
∂f(θi,η

gd
i )

∂ηgdi
ηgdi (25)

where we are using the fact that η̂gdi = 0. Applying the above gives,

θi+1 = θ̂i + E(θ̂i) (ω̃i − bgi )∆t+

(
I3×3 +

∂E(θi) (ω̃i − bgi )∆t

∂θ

)(
θi − θ̂i

)
− E(θ̂i)η

gd
i ∆t (26)

Taking expectation of (26) gives the mean of estimate.

θ̂i+1 = E[θi+1]

= θ̂i + E(θ̂i) (ω̃i − bgi )∆t (27)

Covariance is derived as follows,

Σi+1 = E
[(
θi+1 − θ̂i+1

)(
θi+1 − θ̂i+1

)T]
= E

[(
θ̂i + E(θ̂i) (ω̃i − bgi )∆t+

(
I3×3 +

∂E(θi) (ω̃i − bgi )∆t

∂θ

)(
θi − θ̂i

)
− E(θ̂i)η

gd
i ∆t− θ̂i+1

)]
= E

[((
I3×3 +

∂E(θi) (ω̃i − bgi )∆t

∂θ

)(
θi − θ̂i

)
− E(θ̂i)η

gd
i ∆t

)
(. . . )

T

]
=

(
I3×3 +

∂E(θi) (ω̃i − bgi )∆t

∂θ

)
E
[(
θi − θ̂i

)(
θi − θ̂i

)T](
I3×3 +

∂E(θi) (ω̃i − bgi )∆t

∂θ

)T

+ E(θ̂i)E
[
ηgdi η

gd
i

T
]
E(θ̂i)

T∆t2

=

(
I3×3 +

∂E(θi) (ω̃i − bgi )∆t

∂θ

)
Σi

(
I3×3 +

∂E(θi) (ω̃i − bgi )∆t

∂θ

)T

+ E(θ̂i)Σ
gdE(θ̂i)

T∆t2 (28)

3 Quaternions

3.1 Integration

Taylor expansion of q(t+∆t) is,

q(t+∆t) = q(t) + q̇(t)∆t+
1

2!
q̈(t)∆t2 +

1

3!
q̈(t)∆t3 + . . . (29)



Repeatedly differentiating (1) to obtain higher order derivatives of q(t) and substituting them back above
in (29) gives,

q(t+∆t) = q(t) +

(
1

2
q(t)⊗ ω

)
∆t+

1

2!

(
1

4
q(t)⊗ ω ⊗ ω

)
∆t2 +

1

3!

(
1

8
q(t)⊗ ω ⊗ ω ⊗ ω

)
∆t3 + . . .

= q(t)⊗
(

1 +

(
1

2
ω∆t

)
+

1

2!

(
1

4
ω ⊗ ω

)
∆t2 +

1

3!

(
1

8
ω ⊗ ω ⊗ ω

)
∆t3 + . . .

)
= q(t)⊗

({
1− 1

2!

(
1

4
||ω||2∆t2

)
+

1

4!

(
1

16
||ω||4∆t4

)
− . . .

}
+

{(
1

2
ω∆t

)
− 1

3!

(
1

8
||ω||3ω∆t3

)
+ . . .

})
= q(t)⊗

({
1− 1

2!

(
||ω||∆t

2

)2

+
1

4!

(
||ω||∆t

2

)4

− . . .

}
+

ω

||ω||

{(
||ω||∆t

2

)
− 1

3!

(
||ω||∆t

2

)3

+ . . .

})

= q(t)⊗
(

cos

(
||ω||∆t

2

)
+

ω

||ω||
sin

(
||ω||∆t

2

))
.

3.2 Covariance Propagation

TODO
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